

Question			Answer	Marks	Guidance	
2	(i)		'if n even then n^{3} even, so $n^{3}+1$ odd' oe \Leftarrow with if $n^{3}+1$ odd then n^{3} even but if n^{3} is even, n is not necessarily an integer or \Leftrightarrow with ' n ' +1 odd then n^{3} even so n even', [assuming n is an integer]	B1 B1 [2]	must mention n^{3} is even or even ${ }^{3}$ is even or even \times even $=$ even or ' \Leftrightarrow with if n is odd, n^{3} is odd, so $n^{3}+1$ is even' if 0 in question, allow SC 1 for \Leftrightarrow or \Leftarrow and attempt at using general odd/even in explanation	0 for just 'if n is even, $n^{3}+1$ is odd' 0 if just examples of numbers used condone \leftrightarrow instead of \Leftrightarrow etc in both parts must go further than restating the info in the qn; please annotate as SC
2	(ii)		$\begin{aligned} & \text { showing } \Leftarrow \text { is true } \\ & \Leftarrow \text { chosen and showing that } \Rightarrow \text { [and therefore } \\ & \Leftrightarrow] \text { is/ are not true } \end{aligned}$	B1 B1 [2]	eg when $x>3$, +ve $\times+\mathrm{ve}>0$ stating that true when $x<2$ or giving a counterexample such as 1,0 or a negative number [to show quadratic inequality also true for this number] allow B2 for \Leftarrow and $x>3$ and $x<2$ shown/stated as soln or sketch showing two solns of $x^{2}-5 x+6>0$	0 for just example(s) or for simply stating it is true 0 for saying another solution $x>2$ or B1 for this argument with another symbol

3	(i) $\Leftarrow \mathrm{Q}$	$\mathbf{1}$	or \Leftarrow or ' $\mathrm{Q} \Rightarrow \mathrm{P} ’$	Condone single arrows
	(ii) none [of the ab	$\mathbf{1}$		
(iii) $\Rightarrow \mathrm{Q}$	$\mathbf{1}$	or \Rightarrow		

$\left.\begin{array}{|l|l|l|l|}\hline 4 & \begin{array}{l}\text { mention of }-5 \text { as a square root of } \\ 25 \text { or }(-5)^{2}=25 \\ -5-5 \neq 0 \text { o.e. } \\ \text { or } x+5=0\end{array} & \text { M1 } & \begin{array}{l}\text { condone }-5^{2}=25 \\ \text { M1 }\end{array} \\ \begin{array}{ll}\text { or, dep on first M1 being obtained, } \\ \text { allow M1 for showing that } 5 \text { is the } \\ \text { only soln of } x-5=0\end{array} \\ \text { allow M2 for } \\ x^{2}-25=0 \\ (x+5)(x-5)[=0] \\ \text { so } x-5=0 \text { or } x+5=0\end{array}\right]$

$\mathbf{5}$	(i) T (ii) (iii) (iv) F	3	3 for all correct, 2 for 3 correct. 1 for 2 correct	3

$\mathbf{6}$	'If $2 n$ is an even integer, then n is an odd integer' showing wrong eg 'if n is an even integer, $2 n$ is an even integer'	1	or: $2 n$ an even integer $\Rightarrow n$ an odd integer		
or counterexample eg $n=2$ and $2 n=4$ seen					
[in either order]				$\quad 2$	2
:---					

7	(i) $\Leftarrow \mathrm{Q}$	1	condone omission of P and Q	
	(ii) $\Leftrightarrow \mathrm{Q}$	1		2

