	Question	Answer		Guidance	Question
1	(i)	the diagonals of a rhombus also intersect at 90°	B1	oe for kite or other valid statement/sketch	accept 'diamond' etc
				B0 if eg rectangle or parallelogram etc also included as having diagonals intersecting at 90°	reference merely to 'other shapes' having diagonals intersecting at 90° is not sufficient; sketches must have diagonals drawn, intersecting approx. at right angles but need not be ruled
		ABCD is a square \Rightarrow the diagonals of quadrilateral ABCD intersect at 90°	B1	oe; B0 if no attempt at explanation (explanation does not need to gain a mark)	Do not accept → oe

1	(ii)	eg 8 is an integer but $\sqrt{8}$ is not an integer		
		2 ² is an integen ← wis an integen	B1	0 for 'the square root of some integers is a fraction' Do not accept ← oe
		x^2 is an integer $\Leftarrow x$ is an integer	[2]	Do not accept ← de

Question		Answer	Marks	Guidance		
(i)		'if <i>n</i> even then n^3 even, so $n^3 + 1$ odd' oe	B1	must mention n^3 is even or even ³ is even or even × even = even	0 for just 'if <i>n</i> is even, $n^3 + 1$ is odd' 0 if just examples of numbers used	
		\Leftarrow with if $n^3 + 1$ odd then n^3 even but if n^3 is even, <i>n</i> is not necessarily an integer or	B1		condone \leftrightarrow instead of \Leftrightarrow etc in both parts	
		\Leftrightarrow with ' n^3 + 1 odd then n^3 even so <i>n</i> even', [assuming <i>n</i> is an integer]		or ' \Leftrightarrow with if <i>n</i> is odd, n^3 is odd, so $n^3 + 1$ is even'		
			[2]	if 0 in question, allow SC1 for \Leftrightarrow or \Leftarrow and attempt at using general odd/even in explanation	must go further than restating the info in the qn; please annotate as SC	
(ii)		showing \leftarrow is true	B1	eg when $x > 3$, +ve × +ve > 0	0 for just example(s) or for simply stating it is true	
		\Leftarrow chosen and showing that \Rightarrow [and therefore \Leftrightarrow] is/ are not true	B1	stating that true when $x < 2$ or giving a counterexample such as 1, 0 or a negative number [to show quadratic inequality also true for this number]	0 for saying another solution $x > 2$	
			[2]	allow B2 for \Leftarrow and $x > 3$ and $x < 2$ shown/stated as soln or sketch showing two solns of $x^2 - 5x + 6 > 0$	or B1 for this argument with another symbol	
			(ii) \Leftarrow with if $n^3 + 1$ odd then n^3 even but if n^3 is even, n is not necessarily an integer $\bigcirc \mathbf{r}$ \Leftrightarrow with ' $n^3 + 1$ odd then n^3 even so n even', [assuming n is an integer](ii)showing \Leftarrow is true \Leftarrow chosen and showing that \Rightarrow [and therefore	\leftarrow with if $n^3 + 1$ odd then n^3 even but if n^3 is even, n is not necessarily an integer OT \Leftrightarrow with ' $n^3 + 1$ odd then n^3 even so n even', [assuming n is an integer]B1(ii)showing \Leftarrow is trueB1 \leftarrow chosen and showing that \Rightarrow [and thereforeB1	(i)even x even z even z even x even z even z </th	

3	(i) $\leftarrow Q$	1	or \Leftarrow or 'Q \Rightarrow P'	Condone single arrows
	(ii) none [of the ab	1		
	(iii) $\Rightarrow Q$	1	or \Rightarrow	

4	mention of -5 as a square root of 25 or $(-5)^2 = 25$	M1	condone $-5^2 = 25$
	$-5 - 5 \neq 0$ o.e. or $x + 5 = 0$	M1	or, dep on first M1 being obtained, allow M1 for showing that 5 is the only soln of $x - 5 = 0$ allow M2 for $x^2 - 25 = 0$ (x + 5)(x - 5) [= 0] so $x - 5 = 0$ or $x + 5 = 0$

5	(i) T (ii) (iii) (iv) F	3	3 for all correct, 2 for 3 correct. 1 for 2 correct	3
---	----------------------------------	---	---	---

6	'If 2 <i>n</i> is an even integer, then <i>n</i> is an odd integer'	1	or: $2n$ an even integer $\Rightarrow n$ an odd integer	
	showing wrong eg 'if n is an even integer, $2n$ is an even integer'	1	or counterexample eg $n = 2$ and $2n = 4$ seen [in either order]	2

7	$\begin{array}{ll} (i) & \leftarrow Q \\ (ii) & \Leftrightarrow Q \end{array}$	1 1	condone omission of P and Q	2]
---	--	--------	-----------------------------	---	---